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Abstract The objective of the present study is to propose and evaluate a novel multivariate approach for genetic mapping of com-
plex categorical diseases. This approach results from an application of standard stepwise discriminant analysis to detect linkage based on the
differential marker identity-by-descent (IBD) distributions among the different groups of sib pairs. Two major advantages of this method
are that it allows for simultaneously testing all markers, together with other genetic and environmental factors in a single multivariate set-
ting and it avoids explicitly modeling the complex relationship between the affection status of sib pairs and the underlying genetic determi-
nants. The efficiency and properties of the method are demonstrated via simulations. The proposed multivariate approach has successfully
located the true position(s) under various genetic scenarios. The more important finding is that using highly densely spaced markers (1~
2 cM) leads to only a marginal loss of statistical efficiency of the proposed methods in terms of gene localization and statistical power. These
results have well established its utility and advantages as a fine-mapping tool. A unique property of the proposed method is the ability to
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map multiple linked trait loci to their precise positions due to its sequential nature, as demonstrated via simulations.

Keywords: categorical traits, IBD linkage analysis, discriminant analysis.

A complex disease trait refers to a phenotype
that does not follow simple Mendelian segregation at-
tributable to a single gene locus, but instead, can be
caused by multiple disease loci, their interactions,
polygenic inheritance and environmental effects. Ge-
netic analysis of such a trait is complicated by its dis-
crete phenotypic nature (usually binary), for which a
linear relationship between the observable phenotypes
and the underlying genetic effects does not exist.
Current univariate methods for genetic mapping of
complex disease traits analyze one marker (or an off-
marker position) at a time, which may generate two
problems. First, it does not take into account the
correlated structure of multiple linked markers purely
due to linkage between them, resulting in correlated
test statistics. Hence, it tends to produce a flat test
statistic profile and a wide empirical confidence inter-
val of the estimated trait location. Second, a complex
trait can be caused by effects of multiple linked trait
loci and their interactions. A univariate method might
generate a false peak of test statistic at a position be-
tween two close trait loci, usually called a *ghost’

trait locus.

Methods for genetic mapping of a categorical dis-

ease include model-based method!!’,
d[Z]

model-free

, association analysis based on linkage dise-
[3]

metho
quilibrium'”’ and novel multivariate pattern recogni-
tion techniques["’5 1 Although the model-based ap-
proaches have been very successful in mapping hun-
dreds of disease-predisposing genes, it becomes diffi-
cult to do a good model-based linkage analysis of com-
plex human diseases, for which the modes of inheri-
tance are usually unknown prior to substantial genetic
analyses. Model-free approaches, in which no as-
sumption is made about the mode of inheritance of the
trait under study, are popular in practice due to their
simplicity. Typical model-free methods in human ge-
netics are the affected-sib-pair (ASP) and the extend-
ed affected relative pair tests. This group of methods
and the transmission/ disequilibrium test (TDT) have
one disadvantage: they do not make full use of all the
available data, information from non-affected individ-
uals being discarded due to the very nature of the
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methods.

According to the ways of modeling the relation-
ship between the outward discrete disease phenotypes
and the underlying genetic effects, the approaches for
genetic mapping of a disease can be divided into two
classes. A linear model assumes a linear relationship
and the analysis is performed as if the discrete pheno-
type were continuous. A popular example is (new)
Haseman-Elston (H-E) regressionl). A non-linear
model such as a generalized linear model takes the
(6.7] of phe-
notypes into account. Statistically it is desirable but
modeling a sophisticated genetic architecture in dis-
ease manifestations can be prohibitively complex and
computational demand is high, especially when ran-

dom polygenic and common environmental effects are
d[S] .

non-linear relationship and discrete nature

include

In this study, we propose a novel multivariate
approach to mapping disease loci in human genomic
studies with an intention to overcome the weakness
inherent in current methods. We integrate a standard
stepwise discriminant analysis into a sibpair linkage
study. The rationale underlying this approach is that
if a disease locus is tightly linked to a (some) molecu-
lar marker(s), the differential marker IBD distribu-
tions among the affected groups of sibpairs can be ob-
served because of genetic effects of a disease locus on
phenotypic manifestations and its tight linkage to
nearby markers. Characteristics of this multivariate
approach include (i) it uses information both from af-
fected and unaffected sibs; (ii) it avoids explicitly
modeling the relationships between the outward ordi-
nal (or binary) phenotypes and the underlying genetic
effects (major gene and polygenic background) ; (iii)
due to the sequential testing properties of stepwise
discriminant analysis, it enjoys robustness to an as-
sumption on number of trait loci involved and can
control multiple trait loci background.

1 Statistical method

Consider a sibpair linkage study of a categorical
disease trait. Each sib can take any possible ordinal
value, say, c{c=1,2,,C). We define an affec-
tion group (a specific combination of two ordinal val-
ues of a sib pair) as: G;(i=1,2,-, K). Thus, the
total number of mutually exclusive groups (K) is:

K=CH+

y
o

C = 2 corresponds to a binary human disease
trait and G; might be defined as:

G, = concordant affected, both sibs in a sib pair
are affected;

G, = discordant, only one in a sib pair is affect-
ed;

G, = concordant unaffected, no sibs in a sib pair

are affected,

so that we have a population consisting of three mutu-
ally exclusive groups. Next, for each sib pair we de-
fine a discriminant vector (X ) which can include the
following feature variables: (i) the estimated propor-
tions of alleles shared IBD by the sib pair at L mark-
ers along a chromosome (segment); and (ii) other
covariates (potential confounding factors for a linkage
study), for example, polygenic inheritance and com-
mon environment (aliasing with so-called ‘ household’
effect), mother effects (including maternal genetic
and environmental effects, and mitochondrial effects)
and other epidemiological factors (gender, race, age
and soon). In a linkage study, we are searching for a
marker or cluster of markers (tightly linked to an un-
observed trait locus) whose IBD (the feature vari-
able) distributions among the disease affected groups
lead to the best-fit partition (grouping) to the ob-
served one.

Suppose that we have K disease affected groups
and M feature variables ( L marker IBD variates plus
M.L covariates). Let Ny, Nj, -, Nk be sample
sizes for G;(i=1,2,+*, K). Then, the feature vec-
tor data for N (N = E N;) sib pairs can be ex-

pressed as:

1) (1 (1
U -

(2) 2

£?, 1@, ., 1@
(K) (K) (K)
O, L0 g

K
Denote by g, (i =1,2, -, K) the mean vector
corresponding to the population G;(i =1,2, -, K),
and assume that x‘” is identically and independently
distributed and follows a multivariate normal distribu-
tion with a constant variance-covariance matrix,

1) Elston, R. C. et al. Statistical Analysis for Genetic Epidemiology, Beta4.0-1. The Department of Epidemiology and Biostatistics, Case

Western Reserve Universiry, Cleveland, 2000.
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P~ N(p;, E).

A Wilks’s ratio A, equivalent to a likelihood ra-
tio test statistic!®’, which is used to test the effects of
the feature variates on separation of disease affected
groups, is constructed as:

_ detW

detT’
where det is determinant, W = {w;| the within
group covariance matrix and T = {t,-j{ total covari-

ance matrix. A functionof A, —~(N-(M-K-1)/
2-1)InA, is a random variable asymptotically fol-
lowing a chi-square distribution with M (K — 1) de-
grees of freedom under the null hypothesis Hy: gy =
;= = pg, no differences among the mean vectors
for K disease affected groups.

To assess the contribution from each feature
variable, we use a stepwise discriminant analysis pro-
cedure!’®), which combines forward selection and
backward elimination by user defined criteria (with
the same p-value of 0.05 for inclusion and exclusion
in this study). If the feature variable is a marker
IBD, then assessment of it is equivalent to detection
of linkage to a putative trait locus. Suppose now that
X1, X7, ***, T, have been selected from a total of M
feature variates at the s-th step. To assess the indi-
vidual contribution of each variable, say, x,, from

the remaining M — p feature variates, we partition

W and T corresponding to subset zy, x3, ***, x, and
x, as
w w T T
W= l: 11 12} T = l: 11 12]’
Wy Wy Ty Txn

where W, T, W; and T;(i,j=1,2) have similar
meanings as described previously. Wiy and T;; are
p X p matrices. W, and T, are 1 X p matrices
(vectors). W, and T, are 1 X 1 matrices (scalars).
The Wilks’ statistic for p feature variates is
AP _ C(lieth
etTq

and for p +1 variates, it is

det( Wy — Wy W' W)
? det(Ty — TuTi Ti)

_det(Ty — Ty Ty;' Typ) — det( Wy — Wy W' Wiy)
B det( Wy — Wy W] IW,,) '
Under the assumption of multivariate normality,
we have

Ap N-p-—-K
Fi, = (Apﬂ _1) K -1
~F(K-1,N - p - K).

The variable z, with the largest values of the
partial F-statistic is added to the current subset con-
sisting of p feature variates, provided that it exceeds
the specified critical value at « =0.05.

We use a similar method in the backward elimi-
nation step. First, consider deleting a single variable
from a set of p feature variables. For each variable,
the partial F-statistic is computed to test whether it
provides additional information over the remaining
p — 1 variates. The variate with the smallest partial
provided that the
statistic does not exceed a specified critical value at
a =0.05. The stepwise discriminant procedure alter-
nates forward selection and backward elimination.
The procedure stops when none of the included vari-
ables can be taken out and no further feature variables

F-statistic is eliminated first,

can be taken in. We are cautious about the nominal p
values given in SAS stepwise discriminant procedure.
Extensive empirical simulations prove that the theo-
retical p value by SAS is liberal. Hence, we resort to
a permutation technique to obtain the empirical

thresholds.

2 Simulation studies

To investigate the efficiency and properties of
the proposed discriminant analysis, four Monte Carlo
simulation experiments are carried out. Factors con-
sidered include (i) heritability of the trait locus/loci
(0.1~0.9), which is defined to be the ratio of seg-
regation variance at the trait locus (loci) over total
phenotypic variance of the underlying liability (as ex-
plained later) for the ordinal disease phenotype; (ii)
marker density (1~ 20 cM marker spacings); (iii)
categorical nature of the observations (ordinal versus
binary); (iv) disease prevalence (5% ~90%); and
(v) two-linked trait loci with various distances be-
tween them (20~90 cM).

Only single chromosome segments of different
lengths (5, 10, 25, 50, and 100cM for 1, 2, 5, 10
and 20 cM marker spacings, respectively), covered
by six evenly spaced codominant markers each having
eight equivalent alleles, are simulated. A diallelic
trait locus is simulated in the middle of the interval
between the second and third marker locus in the sce-
narios of one trait locus. The two alleles of the trait
locus are equally frequent. For simplicity, simulated
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pedigrees consist of only nuclear families (two genera-
tions) each having four full-sibs unless indicated oth-
erwise. The total number of progeny, N, is fixed at
800. As a result, the total number of sib pairs is
1200. Under each design, the simulation is repeated
100 times. The global statistical power determined by
counting the number of runs that have the largest F
statistic among finally included marker IBD variates
in the stepwise discriminant procedure greater than
the empirical threshold at « =0.05 or 0.01, is ob-
tained by simulating 500 replicates under the null
model of no trait locus (loci) segregating. The local
statistical power is determined similarly but now we
confine a region between the two flanking markers of
the true trait locus (loci). The standard deviations
calculated over the 100 replicates represent the stan-
dard errors of parameter estimates and test statistics.

The simulation of genetic values of the trait locus
for a liability starts by randomly assigning two alleles
to each parent drawn from a random-mating popula-
tion. A dominant effect is simulated as an interaction
between two parental alleles. The liability of each off-

spring is the sum of its genetic value, the overall
mean and its residual error sampled from N (0, 1).
Effects of various covariates and polygene on disease
liability are not simulated. A set of fixed thresholds
truncate the underlying liability into mutually exclu-
sive and exhaustive intervals, which is then translated
into observable categorical scores with the desired cat-
egorical distributions.

2.1 Heritability of the disease locus (Experiment 1)

A single diallelic trait locus is simulated at 15 cM
on a chromosome of 50 cM. Six evenly spaced codom-
inant markers with eight equally frequent alleles (one
marker at every 10 cM) on the chromosome make up
the linkage group. Four fixed thresholds ( — 1. 25,
—1.0, —0.5 and 0.5) truncate the underlying lia-
bility into five categorical scores with incidences of
10.56%, 5.32%, 14.99%, 38.30% and 30.85%,
respectively. The mean and standard deviations of the
location, F-statistic and R?, and statistical power,
obtained from 100 simulations under each of five trait
locus attributed heritabilities, are given in Table 1.

Table 1.  Effects of heritability of the disease locus on statistical efficiency of the proposed

discriminant analysis approach, in terms of statistical power and gene localization, averaged over 100 replicates

Global statistical power®( % ) Local statistical power”( %)

Heritability =~ Location (cM) Partial R? Test statistic (F)
a=0.05 2=0.01 a=0.05 a=0.01

0.9 15.2 (5.2) 0.189 (0.021) 21.10 (3.03) 100 100 100 100
0.4 15.3 (6.3) 0.044 (0.012) 3.90 (1.11) 99 98 97 96
0.3 15.9 (8.4) 0.032 (0.009) 2.83 (0.84) 81 72 67 62
0.2 17.6 (13.4) 0.024 (0.007) 2.09 (0.59) 48 37 31 24
0.1 22.4 (15.5) 0.019 (0.004) 1.61 (0.39) 13 7 6

0.0 26.8 (17.1) 0.016 (0.004) 1.38 (0.39) 5 1 1 0

a) See text for explanation. Standard errors are in parentheses.

The proposed multivariate approach has success-
fully found the true position, with reasonable biases
under the low trait locus attributed heritability (2=
0.10) due to the interference of false positives. With
heritability increasing, both global and local statistical
powers are dramatically increased and the mean of es-
timated location is closer to the true position. It is ob-
vious that heritability plays an important role in sepa-
rating disease affected groups via marker IBD infor-
mation. The proportion of marker IBD variances a-
mong sib pairs explained by disease affection grouping
(R?) increases with the magnitude of heritability.
Larger standard errors for the F-statistic under high-
er heritabilities are due to scaling effects.

2.2 Marker density (Experiment 2)

The same design as for Experiment 1 is used ex-
cept that heritability of a trait locus is fixed at 0.30.
Five levels of marker densities, from sparsely to
densely distributed markers, are investigated. As
shown in Table 2, marker density influences the per-
formance of the proposed approach in the sibpair link-
age analysis of an ordinal trait. There may be an opti-
mal marker density (2 ~ 10 cM marker spacings) in
which genetic mapping by our approach reaches its
maximal power and minimal estimation errors occur.
If so, this would provide a guide to a multi-stage ge-
netic mapping design. Using highly densely spaced
markers (1~2cM) will lead to little loss of statistical
efficiency in terms of localization and global statistical
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power. These results might well establish its utility and show their advantages as a fine-mapping tool.

Table 2. Effects of marker density on statistical efficiency of the proposed discriminant analysis approach,
in terms of statistical power and gene localization, averaged over 100 replicates

Marker Location? Parcia] RZY Test statistic® Global statistical power (%) Local statistical power (%)
distance® (cM) (cM) artial R (F) a=0.05 «=0.01 a=0.05 2=0.01
20 (30) 32.8 (18.1) 0.026 (0.007) 2.30 (0.62) 60 49 51 44
10 (15) 15.8 (9.5) 0.031 (0.008) 2.70 (0.72) 82 75 69 63
5(7.5) 7.8 (4.5) 0.032 (0.009) 2.83 (0.86) 80 73 66 61
2 (3) 3.2(2.1) 0.035 (0.011) 3.12 (0.97) 86 82 60 58
1(1.5) 1.7 (1.3) 0.037 (0.011) 3.27 (1.04) 84 81 46 44

a) The true location of the trait locus are in parentheses for this column. b) Standard errors are in parentheses.

we work on a second moment form (group) of the
marginal phenotypes instead of directly modeling the
relationship between the marginal phenotypes and the
underlying genetic effects. Moreover, in a discrimi-

2.3 A binary trait and disease prevalence (Experi-
ment 3)

Theoretically or suggested by empirical simula-
tions, genetic mapping for a binary disease is less effi-
cient than that for an ordinal disease using the gener-
alized linear model-based approaches[6’7]. However,
this argument may not be applied to a sibpair linkage
study using a discriminant analysis approach in that

nant analysis, affected groups obtained from the
marginal ordinal phenotypes of a sib pair are no longer
a response variable but instead serve as an explanatory
variable for marker IBD distributions. These charac-
teristics may lead to very different conclusions from
other approaches to modelling marginal phenotypes.

Table 3. Effects of prevalence of the disease locus on statistical efficiency of the proposed discriminant analysis approach for genetic

mapping of complex binary human diseases, in terms of statistical power and gene localization, averaged over 100 replicates

Prevalence Location Partial Test statistic Global statistical power ( % } Local statistical power ( % )
(%) (M) R? (F) «=0.05 2=0.01 a=0.05 a=0.01

90 23.5(17.6) 0.004 (0.002) 2.50 (1.41) 5 4 0 0

70 20.6 (14.2) 0.008 (0.004) 4.76 (2.37) 49 41 34 28

50 16.6 (9.6) 0.012 (0.006) 7.44 (3.94) 73 67 62 57

30 14.8 (8.0) 0.017 (0.008) 10.38 (5.00) 94 92 80 78

20 15.6 (8.2) 0.015 (0.007) 8.92 (4.82) 80 76 71 68

10 18.1 (15.0)  0.006 (0.003) 3.59 (2.08) 26 18 15 13

S 21.7 (14.9)  0.006 (0.003) 3.51(1.84) 25 17 15 13

Standard errors are in parentheses.

We simulate a binary trait with different inci-
dence rates of 5% ~90% (Table 3). Two important
conclusions can be made from this simulation experi-
ment: (i) greater power can be obtained for a binary
disease trait than for an ordinal trait. Under the same
heritability of a trait locus (A% =0.30), the power
(94% at @ =0.05) for a binary disease trait with
prevalence of 30% is larger than the corresponding
ordinal trait (81%, see Table 1 for cross reference);
(ii) performance of the proposed approach is not even
with respect to symmetry of the marginal binary phe-
notype. The optimal performance in terms of localiza-

tion and statistical power is attained at a prevalence of
30%.

2.4 A binary trait that is controlled by two-linked
trait loci (Experiment 4)

A unique property of the proposed method is the
ability to map multiple-linked trait loci to their precise
positions due to its sequential nature. We demonstrate
this property by simulating two-linked trait loci with
various distances between them. For this purpose, a
binary trait with an incidence of 30%, controlled by
two trait loci located on a single chromosome of
length of 100 cM covered by eleven evenly spaced
codominant markers (each at 10 cM), is simulated.
For convenience, we assume that the two trait loci
contribute an equal genetic variance to the variability
of the underlying liability. No epistasis between the
two loci is simulated. Note that under the assumption
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of no epistasis and gender specific genetic heterogene-
ity the covariance between the two trait loci due to
linkage is

—;—[(al —az)1(ay — az)2](1 = 27),

where r i1s the recombination fraction between the
two trait loci and (ay = a3), represents the effect of
gene substitution at the gth (¢ =1,2) trait locus. It
is evident that this covariance depends on the recom-
bination fraction between the two loci. The closer the
two trait loci, the larger the covariance.

We fixed the total trait locus attributed heritabil-
ity for the liability to be 0.50. The gene substitution
effects are appropriately scaled under each distance

Table 4.

option. Distances between the two trait loci are 90,
60, 40, 20 cM, respectively. Under the assumption
of equal genetic contribution of the two trait loci, the
corresponding gene substitutions are 0.9264,
0.8766, 0. 8306 and 0. 7738, respectively, which
translate the marginal genetic variance of each trait
locus to be 0. 4290 (A% =0.21), 0.3842 (k%=
0.19), 0.3449 (R2=0.17) and 0.2994 (k%=
0.15). The two mean trait-locations are determined
by averaging the locations of the two markers with
the largest F-statistics (included in the final subset
during the stepwise discriminant analysis). The sta-
tistical power is obtained by counting the number of
replicates with an F-statistic larger than the critical
value at a =0.05.

Effects of the distance between two QTLs on statistical efficiency of the proposed discriminant analysis approach for genetic

mapping of complex binary human diseases, in terms of statistical power and gene localization, averaged over 100 replicates

) Location (cM) Partial R? Test statistic (F) Global statistical power (% ) Local statistical power ( %)
Distance "o QT2 QTLl QT2 QT QTL2 QTL1 QTL2 QTL1 QTL2
between two
QTLs” a=0.05 a=0.01 a=0.05 a=0.01
(a=0.01) (a=0.01) (a=0.01) (a=0.01)
90 7.1 90.4 0.015 0.015 8.84 85 81 80 68
(5, 95) (7.3) (9.2) (0.007) (0.008) (4.48) (5.04) (82) (79) 77) (66)
60 18.5 71.2 0.019 0.018 11.79 86 93 68 71
(15, 75) (9.6) (10.0) (0.010) (0.008) (6.50) (5.23) (84) (90) (66) (69)
40 27.7 64.20 0.021 0.021 13.25 86 93 72 80
(25, 65) (8.0) (9.9) (0.014) (0.011) (9.13) (6.71) (81) (80) (69) (69)
20 32.8 55.4 0.021 0.023 12.70 72 71 59 55
(35, 55) (11.6) (13.2) (0.016) (0.018) (10.14) (11.45) (65) (67) (52) (53)

a) The true locations of two trait loci are in parentheses for this column. Standard errors are in parentheses.

The results, shown in Table 4, prove that the
proposed multivariate approach can map multiple-
linked loci to their precise positions even in the situa-
tion that two trait loci are close to each other (20 cM)
and separated by only two markers. This nice proper-
ty frees a concern of a ‘ghost’ quantitative trait lo-
cus, a well-known phenomenon for detection of close-
ly linked trait loci by a single trait locus model. This
has established its advantages of the proposed method
as a genome screening tool as it is robust to the as-
sumption of the number of trait loci involved, which
is indeed unknown prior to a substantial genetic anal-
ysis. Furthermore, it saves the complex modeling
work for a multiple trait loci model because it is es-
sentially model-free in this aspect. It is interesting to
note that the averaged R? for each trait locus of two
closely linked trait loci (e.g. 20 and 40 cM) is higher
than that for loosely linked loci although marginal ge-
netic contributions under smaller distances between
them are lower. Generally, it is difficult to detect
multiple closely linked loci, which is demonstrated by

a small decrease in statistical power.
3 Discussion

In this work, we have demonstrated the poten-
tial of a stepwise discriminant analysis as a screening
tool in a linkage study. Because the analysis is carried
out in a single run, the method does not suffer from
the problems associated with multiple testing. Anoth-
er important feature of the proposed method is that it
is essentially model-free in that no specific relation-
ship between the response variable and independent
variables is assumed. Hence, it is not sensitive to
model misspecifications as is a linear model or a gener-
alized linear model.

A discriminant analysis has some analogies to a
logistic regression. For example, both can be used to
analyze discrete data. However, we point out a weak-
ness in the application of logistic regression in a sib-
pair linkage study. The very act of taking cross-prod-
uct in a sibpair regression has changed the relationship
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between the model components so that a threshold
model implied in a logistic regression that is used to
model the relationship between the re-defined pheno-
type (affection state of a sibpair) and its components
might not be valid. Consequently, logistic regression
might have a lower statistical power>!. Though a bit
surprising, it is logical that a discriminant analysis
performs better than a logistic regression because it is
generally inferior to a discriminant analysis when
multivariate assumptions hold or are nearly truel®l.
In discriminant analysis, we need distributional as-
sumptions on the feature vector but not on the group-
ing variable, which is the key difference with logistic
models.

We assumed in this study that the feature vectors
for sib pairs are independent and follow multivariate
normal distributions, both of which can be violated in
the context of a sib pair linkage study, especially
when large sibships are recruited. For example, the
IBD vectors of sib pairs within a family tend to be
correlated. Also, it may happen that some feature
variables are not normally distributed. Moreover, the
p-values reported by the stepwise discriminant analy-
sis procedure of SAS are liberal. These issues deserve

attention in future studies.
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